Journal of Organometallic Chemistry, 146 (1978) 285–292 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

DARSTELLUNG VON cis-TETRAMMINDICARBONYL- UND fac-TRIAMMINTRICARBONYLOSMIUM(II)-HALOGENIDEN

H.-CHR. FRICKENSCHMIDT und W. PREETZ * Institut für anorganische Chemie der Christian-Albrechts-Universität, Olshausenstr. 40–60, 23 Kiel 1 (B.R.D.)

(Eingegangen den 13. Oktober 1977)

Summary

The preparation of cis- $[Os(NH_3)_4(CO)_2]X_2$ (X = Cl, Br, I) by reaction of cistetrahalodicarbonylosmate(II) with liquid NH₃ in the supercritical range at $170^{\circ}C$ and of fac- $[Os(NH_3)_3(CO)_3]X_2$ by reaction of fac-trihalotricarbonylosmate(II) with liquid NH₃ at room temperature is described for the first time. The amminecarbonylosmium(II) complexes are extraordinarily stable and are attacked neither by Cl₂, Br₂ nor hot hydrogen halides. The new compounds are characterized by their vibrational and UV-spectra.

Zusammenfassung

Es wird über die erstmalige Darstellung von cis-[Os(NH₃)₄(CO)₂]X₂ (X = Cl, Br, J) durch Umsetzung von cis-Tetrahalogenodicarbonylosmat(II) mit flüss. NH₃ im überkritischen Bereich bei 170°C und von fac-[Os(NH₃)₃(CO)₃]X₂ durch Behandeln von fac-Trihalogenotricarbonylosmat(II) mit flüss. NH₃ bei Raumtemperatur berichtet. Die Ammincarbonylosmium(II)-Komplexe sind ausserordentlich stabil und werden weder von Cl₂ und Br₂ noch von heissen Halogenwasserstoffsäuren angegriffen. Die neuen Verbindungen werden durch ihre Schwingungs- und UV-Spektren charakterisiert.

Einleitung

Aus der Reihe der oktaedrischen Ammincarbonylkomplexe der Platinmetalle sind bisher nur für Osmium und Ruthenium die Pentamminmonocarbonyle [1-4] und einige Verbindungen, die neben mehreren NH₃-Gruppen und CO noch andere Donatoren enthalten [1,3,5], beschrieben worden. Die Bindungsfestigk hit der nachbarständigen CO-Gruppen in den *cis*-Tetrahalogenodicarbonylbzw. *fac*-Trihalogenotricarbonylosmaten(II), über die kürzlich berichtet wurde [6,7], ist so gross, dass diese Gruppierung selbst unter drastischen Reaktionsbedingungen erhalten bleibt. Das ermöglicht den Austausch der Halogenliganden gegen NH_3 , so dass sich jetzt erstmals *cis*- $[Os(NH_3)_4(CO)_2]X_2$ und *fac*- $[Os(NH_3)_3-(CO)_3]X_2$ (X = Cl, Br, J) darstellen liessen. Die neuen Komplexe wurden durch ihre Absorptions- und Schwingungsspektren charakterisiert.

Ergebnisse und Diskussion

Darstellung und Eigenschaften

Die Komplexsalze des Typs cis- $M_2[OsX_4(CO)_2]$ (M = K, Cs, TEA = Tetraäthylammonium) lösen sich alle mit gelber Farbe in flüssigem Ammoniak, wenn die in Bombenrohre eingeschmolzene Mischung auf Raumtemperatur erwärmt wird. Bei Einsatz grösserer Mengen der Alkalisalze fallen dabei die entsprechenden Alkalihalogenide aus. Während die Lösung des Jodokomplexes, die zunächst am intensivsten gelb erscheint, schon nach kurzer Zeit farblos wird, hellen sich die Lösungen der Chloro- und Bromokomplexe nur auf und behalten auch nach längerem Stehen bei Raumtemperatur eine schwach gelbliche Färbung. Nach dem Abdampfen des Lösungsmittels verbleiben für X = Cl, Br schwach gelbe Rückstände, in denen sich ionophoretisch und dünnschichtchromatographisch jeweils ein neutraler Komplex nachweisen lässt. Für X = J findet man im farblosen Rückstand durch Ionophorese einen kationischen Komplex. Bei längerem Erwärmen der Lösungen auf 125° C treten für X = Cl, Br noch zwei und für X = J zusätzlich ein kationischer Komplex auf. Erst nach mehrtägigem Tempern der Bombenrohre im Autoklaven bei der überkritischen Temperatur von 170°C (NH₃: T_{krit} 132.4°C, p_{krit} 112.3 atm) verläuft für alle Ausgangsverbindungen einheitlich die folgende Reaktion:

 $cis-M_2[OsX_4(CO)_2] + 4 NH_3 \rightarrow cis-[Os(NH_3)_4(CO)_2]X_2 + 2 MX.$

Der nach dem Abdampfen des Ammoniaks verbleibende Rückstand löst sich leicht in Wasser. Durch Zugeben von halbkonz. HX bzw. konz. LiX-Lösung lassen sich die entsprechenden *cis*-Tetrammindicarbonylosmium(II)-Salze in Form kristalliner farbloser Niederschläge abscheiden.

Die Halogenotricarbonylosmate(II) fac-Cs[OsX₃(CO)₃]X₂ (X = Cl, Br, J) lösen sich ebenfalls gut in flüssigem NH₃ und reagieren bereits bei Raumtemperatur innerhalb weniger Tage zu den einheitlichen Produkten fac-[Os(NH₃)₃(CO)₃]-X₂. Auch diese Komplexe lassen sich aus wässriger Lösung umfällen und ineinander umwandeln.

Sowohl die Tetrammine als auch die Triammine sind kinetisch und thermodynamisch sehr stabil. Sie werden weder durch die Oxidationsmittel Cl_2 und Br_2 angegriffen, noch kommt es in Lösungen der halbkonz. Halogenwasserstoffsäuren zu einem Ligandenaustausch. Selbst bei langem Kochen in konz. HX tritt keine merkliche Substitution der NH₃-Gruppen ein. Durch NaOH werden dagegen beide Komplextypen hydrolysiert. Die Komplexsalze sind mit vom Jodid zum Chlorid steigender Tendenz in Wasser gut löslich, in Alkoholen und Aceton lösen sie sich praktisch nicht.

IR- und Raman-Spektren

Die IR-Spektren wurden mit einem Beckman IR-9 an RbJ-Presslingen (ca. 5 mg Komplex auf 1.5 g RbJ) bei 10 K, die Raman-Spektren an den reinen Ver-

Fig. 1. IR- (oben) und Raman-Spektrum (unten) von cis-[Os(NH₃)₄(CO)₂]Cl₂.

bindungen bei Raumtemperatur mit einem CARY-82 mit Argonlaser (514.5 nm) registriert, Fig. 1 und 2. Die Zuordnung und Numerierung in Tab. 1 und 2 erfolgt gemäss [6-8]. Grössere Abweichungen zwischen den einander entsprechenden Banden in den IR- und Ramanspektren sind auf die grossen Temperaturunterschiede bei der Messung zurückzuführen.

Sowohl über oktaedrische *cis*-Tetramminosmium(II)-Komplexe als auch über *cis*-Dicarbonyl- bzw. *fac*-Tricarbonylosmate(II) liegen eingehende schwingungsspektroskopische Untersuchungen vor, die für die gegebene Interpretation der IR- und Ramanspektren wichtige Vergleichsmöglichkeiten bieten [1,6-8].

Für cis-[Os(NH_3)₄(CO)₂]²⁺ der Punktgruppe \overline{C}_{2v} werden neben den Metall— Ligandschwingungen der Rassen 6 A_1 + 2 A_2 + 3 B_1 + 4 B_2 , den CO-Schwingungen

(Fortsetzung s. S. 290)

TABELLE 1. IR- I IR-Intensitäten: s,	UND RAM stark; m, 1	ANSCHWINGUI nittel; w, schwac	VGEN (cm ⁻¹) FU th; v, selu; sh, Sch	R <i>cis</i> -[Os(NH ₃ ulter; br, breit)4(CO)2)X2 UN) Ramun-Intensl	D <i>cls</i> -[Os(ND3) Láten: relativ z	14(C())2]Cl2 1r stlirksten Band	le = 10.	
Schwingungen	C ₃₁	X = Cl (deuterlert)		X = Cl		X = Br		Υ. Υ.	
		IR	Raman	IR	Raman	IR	Raman	IR	Raman
ν _{as} (N—H)	E	2465vs	2458(2)	3242vs	l	3268vs	ł	3260vs	I
U ₈ (N-H)	η1	23139	2323(4)	31 GOVB	3185(7)	3168vs	3100(10)	3172vs	3174(10)
δ _{ns} (NH ₃)	E	1173w	I	1632m	1625vw	1618m	1617w	1612m	I
1		1146w	1132vw	1591m 1555m	 1642w	1 664m	1542(1)	1660m	1538(1)
6.(NHa)	Α,	1016m	1018vw	1326s	1327w	1326m	1331w	1331m	I
a	-		994vw	1308s	1314vw 1294vw	1308m	1303w	1317m	1306(1)
(NH3)	2	638w	614vw	863m	846vw	849m	836w	843m	824(1)
		602W	597vw	786w	765vw	778w	761vw	767 w	1
	c_{20}								
v1v(CO)	41	2069vs	2032(7)	2051vs	2032(10)	2050vs	2038(7)	2060vs	2043(7)
ν16ν(CO)	D_2	1053vs	1955(4)	1943vs	1956(5)	1956vs	1961(4)	1974vs	1967(3)
ν ₁₇ δ (ΟsCO)	B_2	555 m	I	639ms	633vw	6345	629w	6285	627(1)
V126 (OSCO)	B_1	639m	I	604vs	602vw	600vs	596w	50 5vs	592(1)
ν ₉ δ(OsCO)	A_2	I	I	I	569(1)	I	563(1)	I	561(1)
μ ₂ δ(OsCO)	٩I	615m	529(7)	533 8	531(7)	530vs	522(6)	525vs	517(6)
ν ₃ ν(OsC)	41	508(sh)	616(3)(sh)	618(sh)	verdeckt	610w	verdeckt	617(sh)	verdeckt
ν ₁₈ ν(OsC)	В2	1	I	I	I	I	ł	I	1
(N8O)4 44	AI	485vw	477(3)	1	510(5)	1	502(4)	503 <i>w</i>	497(4)
ν ₅ ν(ΟsN)	٩ı	I	ł	1	I	I	I	l	1
V13 V(O8N)	B_1	I	445v w	488vw	481vw	476w	469vw	I	1
и ₁₉ и(OsN)	B_2	I	ł	1	I	I	1	I	į
δ (NOBN) andere		245m(br)	236(4)(br) 145(10) 77(3)	267s(br)	228(2)(br) 144(10) 77(3)	270s(br)	246(2) 160(7)(sh) 136(10) 107(4) 63(5)	260s(br)	249(2) 160(4)(sh) 132(8) 108(9) 101(3)

1

ļ

l i

288

TABELLE 2

IR- UND RAMANSCHWINGUNGEN (cm⁻¹) FÜR /ac-[O8(NH₃)₃(CO)₃]X₂ UND /ac-[Os(ND₃)₃(CO)₃]Cl₂

IR-Intensitäten: 8, stark; m, miltel; w, schwach; v, schr; sh, Schulter; br, breit

Raman-Intensitäton: relativ zur stärksten Bande = 10

Schwingungen	$c_{3_{ll}}$	X = Cl (deuterlert)		X = Cl		X = Br		X = J	
		IR	Raman	IR	Raman	IR	Raman	IR	Raman
(H—H) الم	्य	2446vs	2434(2)	3230vs(br)		3220vs(br)		321 Ovs	l
и _в (И—Н)	٩ı	2289s	2290(3)	3116vs(br)	3158(3)	3152vs(br)	3164(5)	3136vs	3167(4)
δ _{as} (nH3)	হা	1144m	1122(1)	1584m	1	1650m(br)	I	1640m(br)	I
				1551m 1540(sh)	1544(1)	1576m	1536(1)	1560m	1546(1)
δ ₈ (NH ₃)	A_1	1029(sh)	1029(1)	1347(sh)	1369vw	1347(sh)	1351vw	1.349(sh)	1359vw
ı		1014m	1012(1)	1323ms	1331w	1324m	1327vw	1336(sh)	1331vw
							1316vw	1327m	1326(sh)
(CHN)d	ভ	664m	665vw	889m	873vw	868 w	860w	860w	849vw
		621 w	623vw	828w	815vw	813w (00)	• 809vw	802w	800vw
(00)ala	۱۲	2148vs	2141(10)	2153vs	2129(9)	2163vs	2137(10)	2148vs	2136(9)
00)a6a	म	2074vs	2043(8)	2060vs	2038(10)	2067vs	2042(9)	2060vs	2035(10)
ν ₁₁ δ(OsCO)	R	589s	l	613s	607vw	611s	604vw	608s	602vw
ν ₁₀ δ (Ο8CO)	H	572s	570(1)	592s	586(1)	588s	583(1)	586 s	578(1)
ν ₇ δ(0sCO)	A_2	I	ł	I	I	1	I	I	I
ν ₂ δ(0sCO)	A1	ł	501(5)	I	520(6)	1	509(8)	1	498(6)
ν12ν(OsC)	ध	497vs	l	517vs	1	514vs	I	51 2vs	1
ս ₃ ս(OsC)	۸۱	474w	462(1)	487sh	483(1)	483vw	478(1)	486vw	478(1)
V4V(O8N)	A 1	verdeckt	489(sh)	verdeckt	verdeckt	verdeckt	verdeckt	verdeckt	verdeckt
V13P(OsN)	2	424vw	424vw	460w	ł	452vw	436vw	442vw	430vw
6 (N-08-N)			241(1)	277w(br)	252(sh)(br)	276w(br)	244(sh)(br)	276m(br)	252(1)(br)
andere			169(5)		167(7)		157(9)		
			141(7) 78(3)		142(8) 93(sh)		141(sh)(br) 62(6)		144(5)
					•				

der Rassen 2 $A_1 + A_2 + B_1 + 2 B_2$ noch die charakteristischen Frequenzen der NH₃-Gruppe erwartet. Während die A_2 -Schwingungen nur im Raman erlaubt sind, können alle übrigen sowohl im Raman- als auch im IR-Spektrum auftreten.

fac- $[Os(NH_3)_3(CO)_3]^{2+}$ gehört zur Punktgruppe $C_{3\nu}$ mit den Metall--Ligandschwingungen der Rassen $4A_1 + A_2 + 5E$ und den CO-Schwingungen der Rassen $2A_1 + A + 3E$. Dazu kommen die Gruppenfrequenzen von NH₃. Bis auf die inaktive A_2 sind alle Schwingungen sowohl IR- als auch Raman-erlaubt.

Die Elektronendichte am Zentralion und die damit zusammenhängende Bindungsfestigkeit der Liganden wirken sich sehr empfindlich auf die Lage bestimmter Frequenzen der NH₃- und CO-Gruppen aus. Wegen des im Vergleich zu den Halogeniden geringen σ -trans-Effekts von NH₃ sind im cis-[Os(NH₃)₄-(CO)₂]²⁺ gegenüber den cis-Tetrahalogenodicarbonylosmaten die symmetrische CO-Valenzschwingung ν_1 und die asymmetrische Schwingung ν_{16} um 40–50 cm⁻¹ zu höheren Frequenzen verschoben. Durch die σ -Bindung mit NH₃ wird dem Zentralion weniger negative Ladung zugeführt und die Rückbindung mit den CO-Gruppen geschwächt. In fac-[Os(NH₃)₃(CO)₃]²⁺ wird durch das zusätzliche CO die Rückbindung noch schwächer, wie an der weiteren kurzwelligen Verschiebung der CO-Frequenzen zu erkennen ist. Die durch das π -Akzeptorvermögen der drei CO-Gruppen bewirkte Erhöhung der effektiven Oxidationsstufe führt zu einer Festigung der Os-N-Bindungen, mit der Folge, dass die NH-Valenzschwingungen absinken und die rocking-Schwingung ansteigt [9,10].

Auffallend sind die charakteristischen Aufspaltungen einiger NH₃-Schwingungen, die mit 50–80 cm⁻¹ besonders deutlich bei $\rho(NH_3)$ in den IR-Spektren beobachtet werden. Da sie sowohl bei den fac-Triamminen als auch bei den cis-Tetramminen auftreten, können sie nicht durch einen unterschiedlichen trans-Einfluss auf die NH₃-Liganden erklärt werden, denn im Triammin sind die drei H₃N-Os-CO-Achsen gleichwertig, während im Tetrammin eine H₃N-Os-NH₃und zwei H₁N-Os-CO-Gruppierungen vorliegen. Der Vergleich mit den ν (CO)-Schwingungen zeigt, dass die Aufspaltung von dem zum Zentralion symmetrischen oder asymmetrischen Charakter der Schwingungen abhängen muss. Die schwächere und tiefer liegende Bande (760-830 cm⁻¹) steht demnach mit den symmetrischen Schwingungen der Rassen A_1 , die intensivere bei höheren Frequenzen (820-890 cm⁻¹) mit unsymmetrischen B- bzw. E-Schwingungen im Zusammenhang, Ganz ähnliche Aufspaltungen treten bei den Deformationsschwingungen auf. Die NH₃-Ligandenschwingungen sprechen demnach in diesen Komplexen ähnlich empfindlich auf Struktur- und Bindungsänderungen an, wie das für CO-Valenzschwingungen seit langem bekannt ist.

Die Zuordnung der im Bereich von $520-640 \text{ cm}^{-1}$ liegenden $\delta(\text{Os-CO})$ -Schwingungen ist ohne Schwierigkeiten möglich und wird gestützt durch den Vergleich mit den Spektren ähnlicher Carbonylkomplexe. Die *A*- und *B*-Rassen zeigen erwartungsgemäss inverse Intensitätsverhältnisse. Erstere sind stark im Raman- aber schwach im IR-Spektrum, die *B*-Schwingungen verhalten sich umgekehrt. Dagegen lassen sich die nahe beieinanderliegenden Os-C- und Os-N-Schwingungen nicht eindeutig separieren. Durch Deuterierung werden einige überlagerte Banden getrennt. Die Os-C-Schwingungen liegen im oberen, die Os-N-Schwingungen im unteren Teil des Bereichs von 450-520 cm⁻ⁱ. Dabei weisen die letzteren im IR- und vor allem in den Ramanspektren die geringere Intensität auf. Die Deformationsschwingungen, an denen das Zentralion beteiligt ist, liegen im Bereich unterhalb 300 cm^{-1} und besitzen vielfach so geringe Intensität, dass sie nicht sicher zu erkennen sind.

UV-Spektren

Die farblosen Ammincarbonylosmium(II)-Verbindungen (d^6) weisen im sichtbaren Bereich keinerlei Absorptionsbanden auf. Bei der schwachen aber scharfen Bande, die bei *cis*-[Os(NH₃)₄(CO)₂]²⁺ bei 298 nm liegt und bei *fac*-[Os(NH₃)₃-(CO)₃]²⁺ bei 299 nm, handelt es sich um eine Ligandenfeldbande, vermutlich um den spinerlaubten Übergang ${}^{1}A_{1g} \rightarrow {}^{1}T_{1g}$ [1,3].

Experimentelles

Hinweise zur Darstellung der Ausgangsprodukte und zur Analyse finden sich in [6,7]. Während nach 24-stündigem Kochen der Amminkomplexe in konz. DCl überhaupt keine Deuterierung feststellbar ist, gelingt sie durch Erwärmen der D_2O -Lösungen für einige Stunden auf 40–50°C vollständig.

$cis-[Os(NH_3)_4(CO)_2]X_2 (X = Cl, Br, J)$

200 mg cis-Cs₂[OsCl₄(CO)₂] werden mit 5 ml fl. NH₃ in ein Bombenrohr eingeschmolzen und im Autoklaven 6 Tage lang auf 170°C erhitzt. Nach dem Abdampfen des NH₃ wird der farblose Rückstand in einigen ml Wasser gelöst. Beim Zutropfen einer gesättigten LiX- bzw. von konz. HX-Lösung fällt ein farbloser Niederschlag aus, der mehrmals mit Methanol oder Äthanol gewaschen und im Vakuum über CaCl₂ bei Raumtemperatur getrocknet wird. Die Ausbeuten liegen zwischen 70 und 80%. Durch Umkristallisieren aus heisser halbkonz. HX-Lösung erhält man sehr reine kristalline Produkte. Die Analysenwerte für cis-[Os(NH₃)₄(CO)₂]Cl₂ enthält Tab. 3.

$fac-[Os(NH_3)_3(CO)_3]X_2 (X = Cl, Br, J)$

200 mg fac-Cs[OsCl₃(CO)₃] werden mit 5 ml fl. NH₃ in ein Glasrohr eingeschmolzen und 3 Tage bei Raumtemperatur belassen. Der nach Verdampfen des NH₃ verbleibende Rückstand wird in möglichst wenig Wasser gelöst. Durch Zutropfen einer gesättigten wässrigen LiX- bzw. von konz. HX-Lösung fallen die entsprechenden Komplexsalze als farblose kristalline Niederschläge aus. Sie werden mehrmals mit Äthanol oder Methanol gewaschen und im Vakuum-Exsikkator getrocknet. Die Ausbeuten liegen bei 90%. Die Analysenwerte für fac-[Os(NH₃)₃(CO)₃]Cl₂ sind in Tab. 3 angegeben.

TABELLE 3

ANALYSENERGEBNISSE Gef. (ber.) (%)

	Os	Cl	с	Н	N
cis-[Os(NH ₃) ₄ (CO) ₂]Cl ₂	50.2	18.4	6.26	3.33	14.50
	(49.37)	(18.40)	(6.25)	(3.14)	(14.54
fac-[Os(NH3)3(CO)3]Cl2	48.5	18.0	9.23	2.56	10.68
	(48.00)	(17.89)	(9.09)	(2.29)	(10.61

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der chemischen Industrie für die Unterstützung unserer Arbeit.

Literatur

- 1 A.D. Allen und J.R. Stevens, Can. J. Chem., 50 (1972) 3093.
- 2 M.W. Bee, S.F.A. Kettle und D.B. Powell, Spectrochim. Acta A, 30 (1974) 585.
- 3 A.D. Allen, T. Eliades, R.O. Harris und P. Reinsalu, Can. J. Chem., 47 (1967) 1605.
- 4 J.A. Stanko und T.W. Starinshak, Inorg. Chem., 8 (1969) 2156.
- 5 R.J. Irving, J. Chem. Soc., (1956) 2879.
- 6 F.H. Johannsen, W. Preetz und A. Scheffler, J. Organometal. Chem., 102 (1975) 527.
- 7 F.H. Johannsen und W. Preetz, J. Organometal. Chem., 104 (1976) 79.
- 8 M.W. Bee, S.F.A. Kettle und D.B. Powell, Spectrochim. Acta A, 30 (1974) 1637.
- 9 J.X. Wilmshurst, Can. J. Chem., 38 (1960) 467.
- 10 A.D. Allen und C.V. Senoff, Can. J. Chem., 45 (1967) 1337.